Albumin for Resuscitation in Critical Illness

 

A 50-year-old man was brought to the emergency department. He had sustained a burn affecting 55% of his total body surface area and a significant inhalational injury.  In the emergency department he was intubated and ventilated, central venous, arterial and urinary catheters were placed and resuscitation begun using the Parkland formula.

He was transferred to burns intensive care.  Fluid resuscitation was continued using Hartmann’s solution.  A bronchoscopy was performed; 1.26% sodium bicarbonate was used for lavage.  He became increasingly tachycardic and hypotensive.  He was oliguric.  His haematocrit was 0.45.  Fluid status was difficult to assess clinically; he felt warm to touch.  An oesophageal Doppler probe was sited which demonstrated low stroke volume and corrected flow time.  His Doppler parameters improved with each 250ml bolus of Hartmann’s solution but the effect was short lived.  Noradrenaline and then adrenaline infusions were used in an attempt to maintain blood pressure.  After a significant volume of crystalloid had been given, approximately 12 hours after the time of injury, 4.5% human albumin solution was requested.  This seemed to have a more prolonged effect than Hartmann’s solution.  Over the next 12 hours the patient’s haemodynamic status stabilised and he was able to undergo initial surgical management of his burn 36 hours after presentation.

What is the evidence for the use of human albumin solution for fluid resuscitation in critically ill patients.Read More »

Intra-Abdominal Hypertension

 

A 48 year old male was admitted to the ICU with rapidly evolving multi-organ dysfunction. He was in type I respiratory failure, hypotensive and had stage II acute kidney injury. He had been an inpatient recovering from a laparotomy for major urological surgery 5 days prior to his ICU admission. This was complicated by a major intraoperative haemorrhage.

The patient was commenced on treatment for presumed hospital acquired pneumonia. He was placed on mechanical ventilation and a noradrenaline infusion was commenced to maintain a mean arterial pressure of ≥65mmHg. Over the following 24 hours the patient displayed worsening lung compliance in the context of adequate oxygenation and an atracurium infusion was started. Simultaneously the patient appeared to develop an ileus and he became anuric. Repeated clinical examination revealed an increasingly distended abdomen. A CT of the abdomen and pelvis showed a large left sided retroperitoneal haematoma with evidence of pelvico-ureteric leak on the left and an associated fluid collection. The patient was taken to theatre for urgent re-laparotomy.

At the conclusion of the operation, the surgical team was unable to close the abdomen due to significant bowel oedema. They accepted a laparostomy and returned the patient to ICU with a negative pressure wound dressing in-situ. Post-operatively, there was significant improvement in lung compliance, vasopressor requirement and urine output. Enteral feeding was quickly re-established. The abdomen was closed during the same hospital admission and the patient survived-to-discharge home. At no point was this patient’s intra-abdominal pressure measured.

 

Describe the management of intra-abdominal hypertension.

Christopher Westall

Intra-abdominal hypertension (IAH)- abdominal compartment syndrome (ACS) is a well-recognised cause of morbidity and mortality in critically ill patients, rising to prominence in the 1990s with increased early survival of patients with intra-abdominal pathology requiring emergent laparotomy (principally abdominal aortic aneurysm repair and blunt trauma).1,2 IAH/ ACS may be precipitated by a range of insults local (primary IAH) and distant (secondary IAH) to the abdomen.3 The syndrome encompasses a spectrum of severity and there are a range of treatment options, though with little high quality evidence to support these.

The World Society of the Abdominal Compartment Syndrome (WSACS) consensus guidelines recommend that intra-abdominal pressure (IAP) is measured using the trans-bladder technique in any critically ill patient with an associated risk factor for IAH. The normal value for IAP is <12mmHg. IAH is then categorized by increasing pressure increments from grade I (IAP 12-15mmHg) to grade IV (>25mmHg). Abdominal compartment syndrome is defined as sustained IAP >20mmHg associated with new organ dysfunction.3

The WSACS Consensus proposes a management algorithm for IAH/ ACS that is loosely analogous to commonly encountered algorithms for managing raised intracranial pressure The abdomen is considered a fixed compartment with intra-luminal and extra-luminal volumes that can be manipulated through neutral-negative fluid balance, nasogastric and colonic decompression and percutaneous drainage of ascites/collections. In this instance, however, the compliance of the “box”, the abdominal wall, can also be manipulated by patient position, ventilatory strategy and neuromuscular blockade. Decompressive [laparotomy] therapy is reserved for algorithm failure.

The efficacy of protocolised management of IAH/ACS has never been demonstrated. A single prospective observational study suggested reduction in morbidity and mortality using algorithm based management of IAH; the authors quoted an increase in survival-to-discharge rate from 50 to 72% (p= 0.015) across 6 years with improved rates of same-admission closure. However the study was single centre, recruiting patients only after the laparostomy, with substantial selection and observer bias. Furthermore it was unclear which parts of the protocol were effective.4 While the basic principles underlying the WCASC 2013 algorithm are sensible, it must be acknowledged that proposed therapies such as resuscitation with hypertonic fluids, diuretic-driven diuresis and ultrafiltration through renal replacement therapies have no evidence to support them and have potentially serious implications for the patient.

Given that the efficacy of protocolised management of IAH/ACS is uncertain, is there then any evidence to support the measurement of IAP in every “at risk” patient, especially since the list of risk factors for IAH is so extensive that it is difficult to imagine a critically ill patient that is not at risk. This would not be without significant task-burden to critical care nursing staff, and as with any clinical index in ICU, risks morbidity from misinterpretation. There are only two small studies that have examined whether clinical examination can reliably predict intra-abdominal pressure; both small studies with significant methodological flaws and both conducted between 1996- 2000 when awareness of IAH was comparatively low. Importantly both studies compared examination to IAP measurement at pressures well below 20mmHg, where there is little evidence that specific intervention improves patient outcome, beyond highlighting that that patient is at risk of ACS.5,6

Decompressive laparotomy is recommended for the treatment of all patients with ACS refractory to medical therapy.3 In modern practice it is difficult to accurately assess the performance of this strategy in primary IAH/ACS, such is the absence of clinical equipoise. As many reviews acknowledge, the improvement in patient survival rates associated with primary laparostomy in abdominal trauma patients in the 1990s caused a fundamental paradigm shift from which it is now difficult to ethically justify alternative treatment strategies.1,2 That is to say that many patients with IAH/ ACS will now present to the ICU once decompressive laparostomy has either occurred or is imminently planned.

The benefits of decompressive laparotomy in secondary ACS are certainly less; data exists only for acute severe pancreatitis and sepsis associated with secondary peritonitis. While in both instances it must be acknowledged that laparostomy reduces IAP, like many interventions in a critically ill patient population, this does not translate into mortality benefit.7,8 As commentators note, laparostomy may often be performed because of a conceptual benefit of relook-laparotomy 48 hours later, rather than inability to close the abdomen or specific concerns regarding ACS.2 Indeed, regarding secondary peritonitis, there is good evidence that primary closure with on-demand re-laparotomy is non-inferior to laparostomy and planned re-laparotomy, and is associated with fewer surgeries and lower healthcare costs.9 This strategy is now [weakly] endorsed by the WCACS.3

One point that is widely agreed upon is the management of laparostomy. It appears universally agreed that negative pressure wound therapy (NPWT, i.e. “vac dressings”), with or without a form of dynamic retention system, is superior to previously popular methods such as bioprosthetic mesh and Bogota bag. The largest systematic review on the subject suggests that NPWT is associated with improved rates of primary delayed fascial closure (57.8%, 95% CI 50.8- 64.7) and mortality (22.3%, 95% CI 17.5- 27.5) with lower rates of entero-atmospheric fistulation (7.0%, 95% CI 5.0- 9.3) and abscess formation (4.2%, 95% CI 2.3- 6.9).10 This systematic review heavily influenced the most recent NICE review on the topic leading to endorsement of NPWT in clinical guideline IPG467, “Negative pressure wound therapy for the open abdomen” (2013).


Conclusion

The measurement of IAP in all at-risk critically ill patients is probably unnecessary and burdensome in resource terms. Critical care practitioners should have a low index of suspicion for ACS in their patients; if this develops then decompressive laparotomy is the treatment of choice (unless there is a large extra-luminal collection amenable to urgent drainage), particularly since modern laparostomy management appears to be associated with an increasingly low complication rate, if the abdomen cannot be closed.

The consensus guidelines for IAH/ACS remind us that attention to detail; such as ensuring that enteral nutrition is succeeding, that bowel care is optimal and that fluid balance is tightly controlled, may prevent numerous serious ICU-associated syndromes from ever developing.


References

1. Balogh ZJ, Lumsdaine W, Moore EE, Moore FA. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet,  2014; 384:1466-75

2. Leppaniemi AK. Laparostomy: why and when? Critical Care 2010; 14: 216. DOI: 10.1186/cc8857

3. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain MLNG, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, Sugrue M, et al.  Intra-abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med, 2013; 39:1190-1206

4. Cheatham ML, Safcsak KRN. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med,  2010; 38:402-407

5. Kirkpatrick AW, Brenneman FD, McLean RF, Rapanos T, Boulanger BR. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients? Can J Surg, 2000:43:207-11

6. Sugrue M, Bauman A, Jones F, Bishop G, Flabouris A, Parr M, Stewart A, Hillman K, Deane SA. Clinical examination is an inaccurate predictor of intra-abdominal pressure. World J Surg, 2002; 26:1428-31

7. Mentula P, Hienonen P, Kemppainen E, Puolakkainen P, Leppaniemi A. Surgical decompression for abdominal compartment syndrome in severe acute pancreatitis. Arch Surg, 2010; 145:764-9

8. Robledo FA, Luque-de-Leon E, Suarez R, Sanchez P, de la Fuente M, Vargas A, Mier J. Open versus closed management of the abdomen in the surgical treatment of severe secondary peritonitis: a randomized clinical trial. Surg Infect (Larchmt), 2007; 8:63–72

9. van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, et al. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA, 2007; 298:865-73

10. Quyn AJ, Johnston C, Hall D, Chambers A, Arapova N, Ogston S, Amin AI. The open abdomen and temporary abdominal closure systems- historical evolution and systematic review. Colorectal Dis, 2012; 14: e429–38

 

Post-operative Opioid-Induced Hyperalgesia

 

An elderly female was admitted to the intensive care unit (ICU)following a planned hemi-hepatectomy to remove metastatic lesions from a previously resected primary colorectal cancer. The patient had declined neuraxial anaesthesia. The surgery proceeded uneventfully via a rooftop incision under general anaesthesia, which was maintained with remifentanil, sevofluorane and paralysis with atracurium.

30 minutes before the termination of the three hour operation, a bolus of 10mg of morphine was given intravenously and a patient-controlled analgesia (PCA) morphine pump was prepared. At emergence from anaesthesia, paralysis was reversed, and the patient was successfully extubated. In the ICU the patient was instructed in the use of the PCA. She was initially comfortable, but within 30 minutes she complained of worsening abdominal pain around the upper abdominal incision and became tachycardic.

To address this patient’s worsening post-operative abdominal pain 10mg of morphine was given intravenously. Simultaneously she was reassessed and the potential cause of the pain was sought. The abdomen remained soft and mildly tender. Drains were dry, and parameters including blood pressure, respiratory rate, haemoglobin, and arterial blood gases were satisfactory.

The morphine was ineffective. She was given 1g of intravenous paracetamol, a further bolus of 10mg of morphine and two sequential 500mL aliquots of crystalloid. Surgical review was requested. After another 20 minutes the pain had not diminished so she received a bolus of fentanyl and a trial dose of 100mg of intravenous tramadol. Unfortunately these measures did not reduce the pain at all. Although vital signs were unchanged, the patient was increasingly distressed.

There was no apparent clinical deterioration to account for the increased pain. Yet, control of her symptoms had clearly been lost and routine analgesia was ineffective. Urgent senior review was requested. Suspecting that she had become refractory to opioid analgesia, and concerned about the severity of the pain and its potential complications, the consultant stopped the patient’s PCA, increased the inspired oxygen fraction to 0.80 through a non-rebreathe mask, and gave 50mg of ketamine intravenously.

These interventions significantly improved symptoms over the next ten minutes. The patient remained conscious though slightly drowsy and her tachycardia settled. Simple analgesics and a low dose infusion of 2-5 mcg/kg/min (approximately 10-25 mg/h) of ketamine were prescribed. These effectively controlled her pain. After the patient had remained comfortable and clinically stable for several hours, the PCA was gradually re-introduced and the ketamine was discontinued. She was discharged to the ward the following day.

What is opioid-induced hyperalgesia?Read More »

Invasive Fungal Infections on ICU

A 42 year old woman was admitted to the intensive care unit with necrotising pancreatitis. She required sedation and mechanical, vasopressors to maintain adequate mean arterial pressure and extensive crystalloid resuscitation. Enteral nutrition was initially maintained via nasogastric feeding. She was treated with empirical broad-spectrum antibiotics (meropenem) and was prescribed antifungal prophylaxis (fluconazole) at the request of the hepatobiliary surgical team.

 

The patient experienced a prolonged systemic inflammatory response syndrome. She ultimately underwent a pancreatic necrosectomy and required recurrent radiologically-guided percutaneous drainage of intra-abdominal collections. For a large proportion of her ICU admission, enteral nutrition failed and the patient required total parenteral nutrition. Candida albicans was isolated from central venous catheter exits sites, drain exit sites, drain fluid, urine and sputum on several occasions, but there was never any evidence of invasive fungal disease.

The patient was eventually discharged from ICU and survived to discharge from hospital. She was left dependent on pancreatic enzyme replacement and subcutaneous insulin therapy.

Describe the incidence, clinical features and management of fungal infections in non-neutropaenic, non-transplant critical care patients.Read More »

Graft versus Host Disease

A 34-year-old woman received a small bowel, pancreas and abdominal wall transplant.

Despite the operation being technically very difficult and prolonged, she initially recovered well after the procedure and her transplanted bowel started to work. However, after a few days she started developing respiratory complications eventually requiring re-intubation despite antibiotics. She went on to develop multi-organ dysfunction requiring vasopressor support and renal replacement therapy. Antifungals and co-trimoxazole were added, with no additional benefit noted.

A skin rash started to develop, which raised the suspicion of Graft versus Host Disease (GvHD). A diagnostic test was performed (chimerism of peripheral blood leucocytes), and it confirmed the diagnosis of GvHD.

Doses of immunosuppressants such as tacrolimus, mycophenolate mofetil were increased and steroids were started too.

An experimental therapy of mesenchymal stem cells infusion was also employed, but she continued to deteriorate further and she eventually died after a prolonged admission on ICU.

Graft versus Host Disease – what it is, how to diagnose it, how to treat itRead More »

Faecal Peritonitis: The Role of Laparostomy

A 68-year-old previously fit woman was admitted with left lower abdominal pain and signs of cardiovascular shock. She had had a 2 day history of crampy left lower abdominal pain and altered bowel habit. Clinically she had a diagnosis of bowel perforation with generalised peritonitis. She was exhibiting signs of shock with a pronounced tachycardia and a reduced systolic blood pressure.

She was started on fluid resuscitation and intravenous antibiotics. After her cardiovascular system stabilised she was taken to the operating theatre where she had a laparotomy. A sigmoid perforation was found with four quadrant faecal contamination. A Hartmann’s procedure was performed. A laparostomy was decided upon at the first instance, and was covered with a VAC dressing.

She was transferred to the intensive care unit (ICU) still intubated and ventilated.

Her condition rapidly worsened on the ICU. She required vasopressor support intra-operatively and her requirements rapidly escalated. She seemed to stabilse over the next 36 hours. Her condition then worsened and she was taken back to theatre for a washout of her peritoneal cavity. A number of collections were found and further soiling of her abdomen was evident. Her condition remained the same for the next 12 hours but then started to show an improvement again. She continued to make a good response to treatment over the next 3-4 days. She had another washout at 4 days. She was extubated on day 5 and invasive monitoring and cardiovascular support was no longer needed.

 

What is the role of laparotomy in the management of faecal peritonitis?Read More »

The Role of Antibiotics in Acute Pancreatitis

A 65-year-old woman was admitted with a two-day history of feeling non-specifically unwell, severe upper abdominal pain, anorexia and vomiting. On examination she was tachycardic, hypotensive with epigastric tenderness and guarding. Admission amylase was 1024 mmol/L. A diagnosis of acute pancreatitis was made and she was admitted for conservative management with IV fluids and analgaesia. Her initial Ranson score was 3 placing her at moderate risk of of death. Abdominal ultrasound scanning showed a swollen pancreas with a small amount of free fluid but no gallstones or obstruction to the biliary system. Over the next twelve hours she deteriorated on the ward, developing type 1 respiratory failure for which she was referred to intensive care.

On admission to ITU she was semi-electively intubated and ventilated. A low-dose infusion of noradrenaline required to achieve adequate mean arterial pressure. A CT scan showed inflammatory changes and free fluid around the pancreas with possible early pseudocyst formation but no necrotic areas. Two hours after admission she became pyrexial at 39.5°C with a modest increase in her noradrenaline requirements. Peripheral blood cultures were taken and empirical imipenem started following discussion with microbiology. Subsequent repeated microbiological cultures of blood, ascitic fluid, urine and sputum were negative. A nasojejunal tube was passed to allow enteral feeding.

Over the next 48 hours her sedation was weaned and her respiratory function improved. Vasculitis screens, viral serology, lipids, etc. were all negative or normal. Despite her clinical improvement she remained pyrexial with an elevated CRP and white cell count. Further microbiological sampling was unhelpful, serum procalcitonin middling and repeat CT scan showed maturation of her pseduocyst. Fine needle aspiration was performed and subsequently proved culture negative. Her imipenem was stopped after 7 days after gradual resolution of her noradrenaline requirements. Surgical tracheostomy was performed on day 11 to facilitate ventilatory weaning and she was discharged to the ward on day 21.

What is the role for antibiotics in acute pancreatitis?Read More »

Decompressive Craniotomy in Traumatic Brain Injury

A 20 year-old man was admitted to his local district hospital with a severe head injury following an assault. On arrival in the Emergency Department he was agitated with a reduced conscious level, with evidence of blunt trauma to the head and neck. Prior to intubation, his Glasgow Coma Score (GCS) was recorded as 7 (E1V2M4), and with cervical spine precautions he underwent intubation with subsequent mechanical ventilation and sedation.

An urgent CT brain and cervical spine revealed early evidence of intracerebral contusions with diffuse areas of petechial intracerebral haemorrhage identified. Nasal and maxillary fractures were also seen, with no cervical spine pathology identified. He was transferred to the regional neurological centre for assessment and ongoing management.

On arrival in the Neurosurgical Intensive Care unit the patient underwent insertion of an intracranial pressure monitor revealing an intracranial pressure (ICP) of between 30-35 mmHg. Pupil reactivity was sluggish bilaterally. Sedation was changed to infusions of propofol, fentanyl and midazolam, positioning was optimised with 20 degree head-up tilt, endotracheal tube ties were replaced and targeted mechanical ventilation to EtCO2 4- 4.5kPa. Central venous access was established and an infusion of Noradrenaline was used to target cerebral perfusion pressure to 70mmHg.

Initial medical management stabilised ICP below 25mmHg, but within the next 12 hours this began to rise despite neuromuscular blockade and infusion of hypertonic saline. Further CT imaging revealed progression of the intracerebral contusions with developing oedema. The patient was transferred to the operating theatre for insertion of an external ventricular drain. CSF drainage resulted in an immediate but small improvement in ICP but again over the next 12 hours it began to rise, and decision was made for bifrontal decompressive craniectomy.

Subsequent recovery was slow and was complicated by ventilator-associated pneumonia, a protracted tracheostomy wean and severe agitation. The patient underwent intensive neuro-rehabilitation and had been decannulated, but was left with persistent cognitive impairment, seizures and depression.

What is the rationale for performing decompressive craniotomy in TBI?

Read More »

Albumin Use in Critical Illness

A 70-year-old woman was admitted to the surgical ward with abdominal pain. CT scans showed some dilated loops of small bowel. She remained on the surgical ward for 5 days with minimal resolution of her symptoms. She was taken to theatre for exploratory laparotomy where she was diagnosed with faecal peritonitis from a perforated diverticulum. She had a washout and a Hartmanns procedure was performed.
She became unstable during her laparotomy requiring vasopressors and was taken to the intensive care unit postoperatively.  She was left with a laparostomy with a VAC dressing applied. She was treated with lung protective ventilation and remained cardiovascularly unstable. Two days later she was taken back to theatre for a further washout and closure of her abdomen. She developed an ileus and was then started on total parenteral nutrition. An oesophageal doppler monitor was placed to help guide her fluid status. She was extubated on day 4 post op but her filling status remained a problem to gauge. Her fluid balance became very positive and she became very oedematous. Her albumin level dropped significantly. It was then decided to give her daily intravenous albumin.
What evidence is there for the use of albumin in critically ill patients?

Read More »

Predicting Weaning from Mechanical Ventilation

A 60 year old man was electively admitted to the intensive care unit following a combined kidney pancreas transplant. Diabetes mellitus was the cause for his end stage renal failure. He was admitted for overnight HDU care, and was discharged the following day. He had delayed graft function thought to be related to a prolonged cold ischaemic time of the kidney. He would need dialysis until the function of the transplanted kidney improved. Four days later whilst on the ward he became hypotensive, became unconscious and suffered a cardiac arrest. He was successfully resuscitated and was readmitted to ICU.

In the ICU he required a blood transfusion as his haemoglobin level had dropped. He was taken to theatre for a re-laparotomy and a graft pancreatectomy was performed and all bleeding was stopped.

He continued to suffer from delayed kidney graft function and needed intermittent dialysis. After two days he was on minimal respiratory support and on sedation hold was deemed ready for extubation. He was extubated successfully and remained so for the next 12 hours. He then had an episode of bradycardia and had a markedly reduced cardiac output. He was re-intubated and stabilised. A temporary pacing wire was inserted to control potential episodes of bradycardia.

His condition remained stable over the next day and was again extubated. His oxygenation needs increased over the next 12 hours and was placed on non- invasive ventilation. This stabilised him over the next 12 hours but he suffered from retained secretions and was re-intubated. He then suffered with an ileus and had abdominal distension which complicated his respiratory function. He had a tracheostomy placed and remained on mechanical ventilation for 2 weeks. He was difficult to wean as he suffered set backs related to acute sputum retention and a ventilator associated pneumonia.

This patient had been extubated twice with some degree of morbidity associated with it as he had to be reintubated. It would also be reasonable to assume that this increased his length of stay on the ICU slowed down his ICU discharge. Deciding when to extubate a patient seems to be still a difficult decision to make in some cases and the experience of senior clinicians remains an important role.

For those who have not accumulated this level of clinical experience are there tools available to help them in deciding when and who could be weaned and extubated from mechanical ventilation?Read More »