The Role of Capnography during Cardiac Arrest

 A 68 year-old gentleman was admitted to the Emergency Department in cardiac arrest. He had complained of sudden onset upper abdominal pain to his wife immediately prior to a collapse, and bystander cardiopulmonary resuscitation (CPR) was commenced whilst emergency services were called. He had a background of ischaemic heart disease, insulin-dependent diabetes, peripheral vascular disease and hypertension.

On arrival, the Paramedic crew found him to be in ventricular fibrillation was the predominant rhythm. Despite appropriate advanced life support with defibrillation and administration of adrenaline and amiodarone over multiple cycles. His airway was supported with an I-Gel supraglottic airway device, and he was transferred to hospital urgently.

Ischaemic heart disease is the leading cause of death in the world, and sudden cardiac arrest is responsible for more than 60% of adult deaths from coronary heart disease. Early and effective CPR, early defibrillation and physiological support post-resuscitation form the chain of survival [1].

Assessment of the patient’s airway on arrival in the Emergency Department revealed evidence of vomit in the pharynx, and endotracheal intubation was performed. Vomitus was aspirated from his endotracheal tube, indicating pulmonary aspiration either at the time of collapse or during the resuscitation attempts. Sidestream capnography was connected to a self-inflating bag administering high-concentration oxygen. The initial capnography indicated a flattened end tidal carbon dioxide (EtCO2) trace with a highest partial pressure of 1.5 kPa. Chest auscultation was performed and air entry was confirmed as being equal bilaterally.

Chest compressions continued uninterrupted and by this stage the overall resuscitation attempt had been ongoing for 45 minutes. The rhythm had changed to pulseless electrical activity, and despite effective CPR, administration of adrenaline and fluids, there was no return of spontaneous circulation (ROSC). Blood gas analysis revealed a severe metabolic acidosis (pH 6.8, lactate 15.2 mmol/L) and by this stage the highest EtCO2 recorded was 0.9 kPa. Following discussion with the team, and on the grounds of futility, the resuscitation attempt was abandoned.

What is the role of capnography in cardiac arrest?

Read More »

Arthrogryposis & Paediatric Difficult Airway

EMERGENCY MANAGMENT OF A DIFFICULT AIRWAY IN AN INFANT WITH ARTHROGRYPOSIS MULTIPLEX CONGENITA

A 4 month old infant with arthropgryposis multiplex congenital was admitted to the paediatric assessment unit. The infant had been acutely unwell over the preceding 12 hours with respiratory compromise and a productive cough with green sputum. He had signs of respiratory distress with a RR of 40, pulse oximetry showed SpO2 of 85% on air and only 90% with a facemask, reservoir bag and high flow oxygen. It was felt that the infant would need to be intubated and ventilated. Two months before the infant had had a respiratory arrest on the neonatal ward and was unable to be intubated. That situation was resolved by mask ventilation and rescue with an LMA. There were obvious concerns that direct laryngoscopy would be unsuccessful and may precipitate a terminal decline in the patient’s condition.

The infant’s breathing was supported by bag/mask ventilation whilst he was transferred to an ENT theatre. Further anaesthetic support and an ENT surgeon were sought. I.v. access was established through a scalp vein. Ventilation was switched to an Ayres T piece with Jackson-Rees modification. Induction of anaesthesia was initiated with sevoflurane and oxygen. Direct laryngoscopy showed a Lehane and Cormack grade 4 view.

A rigid bronchoscope with video camera monitor was used by the ENT surgeon to obtain a view of the glottis. An epidural catheter was placed down the side port of the bronchoscope and was directed through the vocal cords. The bronchoscope was removed and a fine bore suction catheter was railroaded over the epidural catheter to give more stiffness. The positions of the end of the catheters were checked with the bronchoscope. A size 3.0cm uncuffed endotracheal tube was then railroaded over the catheters into trachea. Position and length were confirmed with the bronchoscope and ventilation was continued. The arrangement is shown in Figure 1.

The child was then transferred to the adult ICU where a retrieval team arrived to transfer the patient to a PICU.

What is arthrogryposis? Describe some methods for achieving control of the difficult paediatric airway.Read More »