Intra-Abdominal Hypertension

 

A 48 year old male was admitted to the ICU with rapidly evolving multi-organ dysfunction. He was in type I respiratory failure, hypotensive and had stage II acute kidney injury. He had been an inpatient recovering from a laparotomy for major urological surgery 5 days prior to his ICU admission. This was complicated by a major intraoperative haemorrhage.

The patient was commenced on treatment for presumed hospital acquired pneumonia. He was placed on mechanical ventilation and a noradrenaline infusion was commenced to maintain a mean arterial pressure of ≥65mmHg. Over the following 24 hours the patient displayed worsening lung compliance in the context of adequate oxygenation and an atracurium infusion was started. Simultaneously the patient appeared to develop an ileus and he became anuric. Repeated clinical examination revealed an increasingly distended abdomen. A CT of the abdomen and pelvis showed a large left sided retroperitoneal haematoma with evidence of pelvico-ureteric leak on the left and an associated fluid collection. The patient was taken to theatre for urgent re-laparotomy.

At the conclusion of the operation, the surgical team was unable to close the abdomen due to significant bowel oedema. They accepted a laparostomy and returned the patient to ICU with a negative pressure wound dressing in-situ. Post-operatively, there was significant improvement in lung compliance, vasopressor requirement and urine output. Enteral feeding was quickly re-established. The abdomen was closed during the same hospital admission and the patient survived-to-discharge home. At no point was this patient’s intra-abdominal pressure measured.

 

Describe the management of intra-abdominal hypertension.

Christopher Westall

Intra-abdominal hypertension (IAH)- abdominal compartment syndrome (ACS) is a well-recognised cause of morbidity and mortality in critically ill patients, rising to prominence in the 1990s with increased early survival of patients with intra-abdominal pathology requiring emergent laparotomy (principally abdominal aortic aneurysm repair and blunt trauma).1,2 IAH/ ACS may be precipitated by a range of insults local (primary IAH) and distant (secondary IAH) to the abdomen.3 The syndrome encompasses a spectrum of severity and there are a range of treatment options, though with little high quality evidence to support these.

The World Society of the Abdominal Compartment Syndrome (WSACS) consensus guidelines recommend that intra-abdominal pressure (IAP) is measured using the trans-bladder technique in any critically ill patient with an associated risk factor for IAH. The normal value for IAP is <12mmHg. IAH is then categorized by increasing pressure increments from grade I (IAP 12-15mmHg) to grade IV (>25mmHg). Abdominal compartment syndrome is defined as sustained IAP >20mmHg associated with new organ dysfunction.3

The WSACS Consensus proposes a management algorithm for IAH/ ACS that is loosely analogous to commonly encountered algorithms for managing raised intracranial pressure The abdomen is considered a fixed compartment with intra-luminal and extra-luminal volumes that can be manipulated through neutral-negative fluid balance, nasogastric and colonic decompression and percutaneous drainage of ascites/collections. In this instance, however, the compliance of the “box”, the abdominal wall, can also be manipulated by patient position, ventilatory strategy and neuromuscular blockade. Decompressive [laparotomy] therapy is reserved for algorithm failure.

The efficacy of protocolised management of IAH/ACS has never been demonstrated. A single prospective observational study suggested reduction in morbidity and mortality using algorithm based management of IAH; the authors quoted an increase in survival-to-discharge rate from 50 to 72% (p= 0.015) across 6 years with improved rates of same-admission closure. However the study was single centre, recruiting patients only after the laparostomy, with substantial selection and observer bias. Furthermore it was unclear which parts of the protocol were effective.4 While the basic principles underlying the WCASC 2013 algorithm are sensible, it must be acknowledged that proposed therapies such as resuscitation with hypertonic fluids, diuretic-driven diuresis and ultrafiltration through renal replacement therapies have no evidence to support them and have potentially serious implications for the patient.

Given that the efficacy of protocolised management of IAH/ACS is uncertain, is there then any evidence to support the measurement of IAP in every “at risk” patient, especially since the list of risk factors for IAH is so extensive that it is difficult to imagine a critically ill patient that is not at risk. This would not be without significant task-burden to critical care nursing staff, and as with any clinical index in ICU, risks morbidity from misinterpretation. There are only two small studies that have examined whether clinical examination can reliably predict intra-abdominal pressure; both small studies with significant methodological flaws and both conducted between 1996- 2000 when awareness of IAH was comparatively low. Importantly both studies compared examination to IAP measurement at pressures well below 20mmHg, where there is little evidence that specific intervention improves patient outcome, beyond highlighting that that patient is at risk of ACS.5,6

Decompressive laparotomy is recommended for the treatment of all patients with ACS refractory to medical therapy.3 In modern practice it is difficult to accurately assess the performance of this strategy in primary IAH/ACS, such is the absence of clinical equipoise. As many reviews acknowledge, the improvement in patient survival rates associated with primary laparostomy in abdominal trauma patients in the 1990s caused a fundamental paradigm shift from which it is now difficult to ethically justify alternative treatment strategies.1,2 That is to say that many patients with IAH/ ACS will now present to the ICU once decompressive laparostomy has either occurred or is imminently planned.

The benefits of decompressive laparotomy in secondary ACS are certainly less; data exists only for acute severe pancreatitis and sepsis associated with secondary peritonitis. While in both instances it must be acknowledged that laparostomy reduces IAP, like many interventions in a critically ill patient population, this does not translate into mortality benefit.7,8 As commentators note, laparostomy may often be performed because of a conceptual benefit of relook-laparotomy 48 hours later, rather than inability to close the abdomen or specific concerns regarding ACS.2 Indeed, regarding secondary peritonitis, there is good evidence that primary closure with on-demand re-laparotomy is non-inferior to laparostomy and planned re-laparotomy, and is associated with fewer surgeries and lower healthcare costs.9 This strategy is now [weakly] endorsed by the WCACS.3

One point that is widely agreed upon is the management of laparostomy. It appears universally agreed that negative pressure wound therapy (NPWT, i.e. “vac dressings”), with or without a form of dynamic retention system, is superior to previously popular methods such as bioprosthetic mesh and Bogota bag. The largest systematic review on the subject suggests that NPWT is associated with improved rates of primary delayed fascial closure (57.8%, 95% CI 50.8- 64.7) and mortality (22.3%, 95% CI 17.5- 27.5) with lower rates of entero-atmospheric fistulation (7.0%, 95% CI 5.0- 9.3) and abscess formation (4.2%, 95% CI 2.3- 6.9).10 This systematic review heavily influenced the most recent NICE review on the topic leading to endorsement of NPWT in clinical guideline IPG467, “Negative pressure wound therapy for the open abdomen” (2013).


Conclusion

The measurement of IAP in all at-risk critically ill patients is probably unnecessary and burdensome in resource terms. Critical care practitioners should have a low index of suspicion for ACS in their patients; if this develops then decompressive laparotomy is the treatment of choice (unless there is a large extra-luminal collection amenable to urgent drainage), particularly since modern laparostomy management appears to be associated with an increasingly low complication rate, if the abdomen cannot be closed.

The consensus guidelines for IAH/ACS remind us that attention to detail; such as ensuring that enteral nutrition is succeeding, that bowel care is optimal and that fluid balance is tightly controlled, may prevent numerous serious ICU-associated syndromes from ever developing.


References

1. Balogh ZJ, Lumsdaine W, Moore EE, Moore FA. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet,  2014; 384:1466-75

2. Leppaniemi AK. Laparostomy: why and when? Critical Care 2010; 14: 216. DOI: 10.1186/cc8857

3. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain MLNG, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, Sugrue M, et al.  Intra-abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med, 2013; 39:1190-1206

4. Cheatham ML, Safcsak KRN. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med,  2010; 38:402-407

5. Kirkpatrick AW, Brenneman FD, McLean RF, Rapanos T, Boulanger BR. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients? Can J Surg, 2000:43:207-11

6. Sugrue M, Bauman A, Jones F, Bishop G, Flabouris A, Parr M, Stewart A, Hillman K, Deane SA. Clinical examination is an inaccurate predictor of intra-abdominal pressure. World J Surg, 2002; 26:1428-31

7. Mentula P, Hienonen P, Kemppainen E, Puolakkainen P, Leppaniemi A. Surgical decompression for abdominal compartment syndrome in severe acute pancreatitis. Arch Surg, 2010; 145:764-9

8. Robledo FA, Luque-de-Leon E, Suarez R, Sanchez P, de la Fuente M, Vargas A, Mier J. Open versus closed management of the abdomen in the surgical treatment of severe secondary peritonitis: a randomized clinical trial. Surg Infect (Larchmt), 2007; 8:63–72

9. van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, et al. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA, 2007; 298:865-73

10. Quyn AJ, Johnston C, Hall D, Chambers A, Arapova N, Ogston S, Amin AI. The open abdomen and temporary abdominal closure systems- historical evolution and systematic review. Colorectal Dis, 2012; 14: e429–38

 

Faecal Peritonitis: The Role of Laparostomy

A 68-year-old previously fit woman was admitted with left lower abdominal pain and signs of cardiovascular shock. She had had a 2 day history of crampy left lower abdominal pain and altered bowel habit. Clinically she had a diagnosis of bowel perforation with generalised peritonitis. She was exhibiting signs of shock with a pronounced tachycardia and a reduced systolic blood pressure.

She was started on fluid resuscitation and intravenous antibiotics. After her cardiovascular system stabilised she was taken to the operating theatre where she had a laparotomy. A sigmoid perforation was found with four quadrant faecal contamination. A Hartmann’s procedure was performed. A laparostomy was decided upon at the first instance, and was covered with a VAC dressing.

She was transferred to the intensive care unit (ICU) still intubated and ventilated.

Her condition rapidly worsened on the ICU. She required vasopressor support intra-operatively and her requirements rapidly escalated. She seemed to stabilse over the next 36 hours. Her condition then worsened and she was taken back to theatre for a washout of her peritoneal cavity. A number of collections were found and further soiling of her abdomen was evident. Her condition remained the same for the next 12 hours but then started to show an improvement again. She continued to make a good response to treatment over the next 3-4 days. She had another washout at 4 days. She was extubated on day 5 and invasive monitoring and cardiovascular support was no longer needed.

 

What is the role of laparotomy in the management of faecal peritonitis?Read More »

The Role of Antibiotics in Acute Pancreatitis

A 65-year-old woman was admitted with a two-day history of feeling non-specifically unwell, severe upper abdominal pain, anorexia and vomiting. On examination she was tachycardic, hypotensive with epigastric tenderness and guarding. Admission amylase was 1024 mmol/L. A diagnosis of acute pancreatitis was made and she was admitted for conservative management with IV fluids and analgaesia. Her initial Ranson score was 3 placing her at moderate risk of of death. Abdominal ultrasound scanning showed a swollen pancreas with a small amount of free fluid but no gallstones or obstruction to the biliary system. Over the next twelve hours she deteriorated on the ward, developing type 1 respiratory failure for which she was referred to intensive care.

On admission to ITU she was semi-electively intubated and ventilated. A low-dose infusion of noradrenaline required to achieve adequate mean arterial pressure. A CT scan showed inflammatory changes and free fluid around the pancreas with possible early pseudocyst formation but no necrotic areas. Two hours after admission she became pyrexial at 39.5°C with a modest increase in her noradrenaline requirements. Peripheral blood cultures were taken and empirical imipenem started following discussion with microbiology. Subsequent repeated microbiological cultures of blood, ascitic fluid, urine and sputum were negative. A nasojejunal tube was passed to allow enteral feeding.

Over the next 48 hours her sedation was weaned and her respiratory function improved. Vasculitis screens, viral serology, lipids, etc. were all negative or normal. Despite her clinical improvement she remained pyrexial with an elevated CRP and white cell count. Further microbiological sampling was unhelpful, serum procalcitonin middling and repeat CT scan showed maturation of her pseduocyst. Fine needle aspiration was performed and subsequently proved culture negative. Her imipenem was stopped after 7 days after gradual resolution of her noradrenaline requirements. Surgical tracheostomy was performed on day 11 to facilitate ventilatory weaning and she was discharged to the ward on day 21.

What is the role for antibiotics in acute pancreatitis?Read More »

When to Initiate Parenteral Nutrition

When to Initiate Parenteral Nutrition

A 19 year old man presented to the surgical team complaining of abdominal pain. He underwent a laparoscopic appendicectomy and a perforated appendix was removed. He returned to the surgical ward and three days later was ready for discharge. Unfortunately he then developed worsening abdominal pain, fevers and breathlessness. He underwent a CT scan and this demonstrated multiple collections of infected matter within his abdomen in addition to bi-basal atelectasis. He was admitted to the intensive care unit for haemodynamic monitoring, oxygen therapy and broad spectrum antibiotics. He underwent three intra-abdominal washouts of infected material over an eight day admission. During this time he had attempted enteral feeding via a nasogastric tube but had very high gastric aspirates, with no absorption, as a result of a prolonged ileus. He was started on parenteral nutrition on day eight of his ICU admission.

When should parenteral nutrition be initiated in those that are failing to meet caloric targets with enteral feeding alone?

Read More »

Medical Management of Abdominal Compartment Syndrome

Medical Management of Abdominal Compartment Syndrome

An elderly man was admitted after a Hartman’s procedure with primary closure for a perforated sigmoid diverticulum with four quadrant peritonitis. Postoperatively, he remained ventilated and noradrenaline dependent. His intra-abdominal pressures gradually rose from 15 to 24mmHg. Urine output was poor, and he required peak pressures of 28cmH2O to achieve 6ml/kg tidal volumes. Vasopressor requirements gradually increased and a diagnosis of abdominal compartment syndrome was made. Medical management was attempted with fluid resuscitation, increased sedation, aspiration of nasogastric tube and neuromuscular blockade. However this did not improve the intra-abdominal pressures so the patient returned to theatre laparostomy and VAC dressing. On return from theatre, intra-abdominal pressures stabilised between 12 and 15mmHg. Noradrenaline requirements fell and urine output improved. The abdomen was closed on day 5 and he was discharged from ICU on day 10.

What non-surgical strategies can be used to reduce intra-abdominal pressure?

Read More »

Nutrition in Acute Pancreatitis

Nutrition in Acute Pancreatitis

A 55-year-old previously healthy lady was admitted with pancreatitis secondary to gallstones. Her admission modified Glasgow Score was 4, and CT scan showed approximately 70% necrosis of the pancreas encompassing the neck, body and tail with sparing of the head. She rapidly developed ARDS, AKI and vasoplegia, and subsequently developed abdominal compartment syndrome requiring decompressive laparotomy. Her later complications included intraabdominal collections requiring percutaneous drainage, upper GI bleeding, and staged closure of her laparostomy. She was initially commenced on enteral NG feeding but developed high NG aspirates despite pro-kinetics. Parenteral nutrition (PN) was commenced in combination with a ‘trophic’ enteral feed. Four weeks into her admission her triglyceride level was found to be elevated, necessitating lipid free PN and cessation of propofol. This led to a drop in her triglyceride level.

How should we manage the provision of nutrition in acute pancreatitis?

Read More »

Decompressive Laparotomy in Abdominal Compartment Syndrome

Decompressive Laparotomy in Abdominal Compartment Syndrome

A 55 yr old man developed severe necrotizing pancreatitis with multiorgan failure. One week into his illness he had developed multiple intra-abdominal collections and had high intra-abdominal pressures. Initial conservative management failed, percutaneous drainage of his collections failed to reduce the abdominal pressures, and he underwent decompressive laparotomy.

What is the evidence behind the current guidelines for the measurement of intra-abdominal hypertension and the use of decompressive laparotomy in the management of Abdominal Compartment Syndrome?Read More »

Intraabdominal Hypertension & Abdominal Compartment Syndrome

Intraabdominal Hypertension & Abdominal Compartment Syndrome

A 35 year old was admitted following a simultaneous kidney pancreas transplant. The procedure had been complicated and she had received a large volume transfusion and crystalloid infusion.Her initial intraabdominal pressures were elevated at 22cmH2O on admission to the intensive care. It continued to escalate over the next 48 hours peaking at 29. She was managed with sedation, NG tube and abdominal perfusion pressures kept above 60mmHg. The tranplanted pancreas remained functional, but the renal transplant showed delayed graft function. On day 4 there was a reduction in her abdominal pressure and her urine output correspondingly increased.

What is the current evidence for the management of intra abdominal hypertension (IAH)?Read More »