Intra-Abdominal Hypertension

 

A 48 year old male was admitted to the ICU with rapidly evolving multi-organ dysfunction. He was in type I respiratory failure, hypotensive and had stage II acute kidney injury. He had been an inpatient recovering from a laparotomy for major urological surgery 5 days prior to his ICU admission. This was complicated by a major intraoperative haemorrhage.

The patient was commenced on treatment for presumed hospital acquired pneumonia. He was placed on mechanical ventilation and a noradrenaline infusion was commenced to maintain a mean arterial pressure of ≥65mmHg. Over the following 24 hours the patient displayed worsening lung compliance in the context of adequate oxygenation and an atracurium infusion was started. Simultaneously the patient appeared to develop an ileus and he became anuric. Repeated clinical examination revealed an increasingly distended abdomen. A CT of the abdomen and pelvis showed a large left sided retroperitoneal haematoma with evidence of pelvico-ureteric leak on the left and an associated fluid collection. The patient was taken to theatre for urgent re-laparotomy.

At the conclusion of the operation, the surgical team was unable to close the abdomen due to significant bowel oedema. They accepted a laparostomy and returned the patient to ICU with a negative pressure wound dressing in-situ. Post-operatively, there was significant improvement in lung compliance, vasopressor requirement and urine output. Enteral feeding was quickly re-established. The abdomen was closed during the same hospital admission and the patient survived-to-discharge home. At no point was this patient’s intra-abdominal pressure measured.

 

Describe the management of intra-abdominal hypertension.

Christopher Westall

Intra-abdominal hypertension (IAH)- abdominal compartment syndrome (ACS) is a well-recognised cause of morbidity and mortality in critically ill patients, rising to prominence in the 1990s with increased early survival of patients with intra-abdominal pathology requiring emergent laparotomy (principally abdominal aortic aneurysm repair and blunt trauma).1,2 IAH/ ACS may be precipitated by a range of insults local (primary IAH) and distant (secondary IAH) to the abdomen.3 The syndrome encompasses a spectrum of severity and there are a range of treatment options, though with little high quality evidence to support these.

The World Society of the Abdominal Compartment Syndrome (WSACS) consensus guidelines recommend that intra-abdominal pressure (IAP) is measured using the trans-bladder technique in any critically ill patient with an associated risk factor for IAH. The normal value for IAP is <12mmHg. IAH is then categorized by increasing pressure increments from grade I (IAP 12-15mmHg) to grade IV (>25mmHg). Abdominal compartment syndrome is defined as sustained IAP >20mmHg associated with new organ dysfunction.3

The WSACS Consensus proposes a management algorithm for IAH/ ACS that is loosely analogous to commonly encountered algorithms for managing raised intracranial pressure The abdomen is considered a fixed compartment with intra-luminal and extra-luminal volumes that can be manipulated through neutral-negative fluid balance, nasogastric and colonic decompression and percutaneous drainage of ascites/collections. In this instance, however, the compliance of the “box”, the abdominal wall, can also be manipulated by patient position, ventilatory strategy and neuromuscular blockade. Decompressive [laparotomy] therapy is reserved for algorithm failure.

The efficacy of protocolised management of IAH/ACS has never been demonstrated. A single prospective observational study suggested reduction in morbidity and mortality using algorithm based management of IAH; the authors quoted an increase in survival-to-discharge rate from 50 to 72% (p= 0.015) across 6 years with improved rates of same-admission closure. However the study was single centre, recruiting patients only after the laparostomy, with substantial selection and observer bias. Furthermore it was unclear which parts of the protocol were effective.4 While the basic principles underlying the WCASC 2013 algorithm are sensible, it must be acknowledged that proposed therapies such as resuscitation with hypertonic fluids, diuretic-driven diuresis and ultrafiltration through renal replacement therapies have no evidence to support them and have potentially serious implications for the patient.

Given that the efficacy of protocolised management of IAH/ACS is uncertain, is there then any evidence to support the measurement of IAP in every “at risk” patient, especially since the list of risk factors for IAH is so extensive that it is difficult to imagine a critically ill patient that is not at risk. This would not be without significant task-burden to critical care nursing staff, and as with any clinical index in ICU, risks morbidity from misinterpretation. There are only two small studies that have examined whether clinical examination can reliably predict intra-abdominal pressure; both small studies with significant methodological flaws and both conducted between 1996- 2000 when awareness of IAH was comparatively low. Importantly both studies compared examination to IAP measurement at pressures well below 20mmHg, where there is little evidence that specific intervention improves patient outcome, beyond highlighting that that patient is at risk of ACS.5,6

Decompressive laparotomy is recommended for the treatment of all patients with ACS refractory to medical therapy.3 In modern practice it is difficult to accurately assess the performance of this strategy in primary IAH/ACS, such is the absence of clinical equipoise. As many reviews acknowledge, the improvement in patient survival rates associated with primary laparostomy in abdominal trauma patients in the 1990s caused a fundamental paradigm shift from which it is now difficult to ethically justify alternative treatment strategies.1,2 That is to say that many patients with IAH/ ACS will now present to the ICU once decompressive laparostomy has either occurred or is imminently planned.

The benefits of decompressive laparotomy in secondary ACS are certainly less; data exists only for acute severe pancreatitis and sepsis associated with secondary peritonitis. While in both instances it must be acknowledged that laparostomy reduces IAP, like many interventions in a critically ill patient population, this does not translate into mortality benefit.7,8 As commentators note, laparostomy may often be performed because of a conceptual benefit of relook-laparotomy 48 hours later, rather than inability to close the abdomen or specific concerns regarding ACS.2 Indeed, regarding secondary peritonitis, there is good evidence that primary closure with on-demand re-laparotomy is non-inferior to laparostomy and planned re-laparotomy, and is associated with fewer surgeries and lower healthcare costs.9 This strategy is now [weakly] endorsed by the WCACS.3

One point that is widely agreed upon is the management of laparostomy. It appears universally agreed that negative pressure wound therapy (NPWT, i.e. “vac dressings”), with or without a form of dynamic retention system, is superior to previously popular methods such as bioprosthetic mesh and Bogota bag. The largest systematic review on the subject suggests that NPWT is associated with improved rates of primary delayed fascial closure (57.8%, 95% CI 50.8- 64.7) and mortality (22.3%, 95% CI 17.5- 27.5) with lower rates of entero-atmospheric fistulation (7.0%, 95% CI 5.0- 9.3) and abscess formation (4.2%, 95% CI 2.3- 6.9).10 This systematic review heavily influenced the most recent NICE review on the topic leading to endorsement of NPWT in clinical guideline IPG467, “Negative pressure wound therapy for the open abdomen” (2013).


Conclusion

The measurement of IAP in all at-risk critically ill patients is probably unnecessary and burdensome in resource terms. Critical care practitioners should have a low index of suspicion for ACS in their patients; if this develops then decompressive laparotomy is the treatment of choice (unless there is a large extra-luminal collection amenable to urgent drainage), particularly since modern laparostomy management appears to be associated with an increasingly low complication rate, if the abdomen cannot be closed.

The consensus guidelines for IAH/ACS remind us that attention to detail; such as ensuring that enteral nutrition is succeeding, that bowel care is optimal and that fluid balance is tightly controlled, may prevent numerous serious ICU-associated syndromes from ever developing.


References

1. Balogh ZJ, Lumsdaine W, Moore EE, Moore FA. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet,  2014; 384:1466-75

2. Leppaniemi AK. Laparostomy: why and when? Critical Care 2010; 14: 216. DOI: 10.1186/cc8857

3. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain MLNG, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, Sugrue M, et al.  Intra-abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med, 2013; 39:1190-1206

4. Cheatham ML, Safcsak KRN. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med,  2010; 38:402-407

5. Kirkpatrick AW, Brenneman FD, McLean RF, Rapanos T, Boulanger BR. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients? Can J Surg, 2000:43:207-11

6. Sugrue M, Bauman A, Jones F, Bishop G, Flabouris A, Parr M, Stewart A, Hillman K, Deane SA. Clinical examination is an inaccurate predictor of intra-abdominal pressure. World J Surg, 2002; 26:1428-31

7. Mentula P, Hienonen P, Kemppainen E, Puolakkainen P, Leppaniemi A. Surgical decompression for abdominal compartment syndrome in severe acute pancreatitis. Arch Surg, 2010; 145:764-9

8. Robledo FA, Luque-de-Leon E, Suarez R, Sanchez P, de la Fuente M, Vargas A, Mier J. Open versus closed management of the abdomen in the surgical treatment of severe secondary peritonitis: a randomized clinical trial. Surg Infect (Larchmt), 2007; 8:63–72

9. van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, et al. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA, 2007; 298:865-73

10. Quyn AJ, Johnston C, Hall D, Chambers A, Arapova N, Ogston S, Amin AI. The open abdomen and temporary abdominal closure systems- historical evolution and systematic review. Colorectal Dis, 2012; 14: e429–38

 

Advertisements

Adjunctive Therapies in Bacterial Meningitis

 

A 42 year old female with type 2 diabetes presented to hospital with fevers, malaise and headache. She had become unwell 7 days earlier with coryzal symptoms, feverishness, and cough with green sputum. On examination she was unwell and intermittently drowsy but gas exchange was adequate and she was haemodynamically stable with lactate 1.5 units. Temperature was 39.6oC and glucose was 15.8 units. Chest x-ray showed bibasal consolidation. CRP was 35 units and white cell count was 12.9. She received ceftriaxone 2 g, clarithromycin 500 mg, intravenous crystalloid 1000 mL and an insulin sliding scale.

One hour after admission the patient deteriorated with GCS 6 and non-purposeful shaking movements of the right arm and leg, which resolved with diazepam 5 mg intravenously. Her airway became partially obstructed despite nasopharyngeal and oral airways and she was urgently intubated. Aciclovir 900 mg was given and the patient was transferred to the ICU.

CT head showed no abnormality. A lumbar puncture revealed turbid yellow-tinged cerebrospinal fluid (CSF). Dexamethasone 10 mg was given. A phenytoin infusion was started. Sedation was maintained with propofol and fentanyl.

The CSF showed Gram positive cocci and a white cell count of 1274 units with neutrophils 1248 units. CSF glucose was 0.3 units and protein was 5.5 g. Ceftriaxone twice daily and dexamethasone four times daily were continued and acyclovir was discontinued. Blood cultures and CSF both grew Streptococcus pneumoniae. Viral PCR was negative. After 48 hours the patient was extubated and then discharged to the ward without any neurological deficit. She went home 5 days after admission. Ceftriaxone was given for a total of 14 days, facilitated by the outpatient parenteral antibiotic therapy team. She was advised not to drive for 6 months.

What adjunctive therapies, if any, are effective in the treatment of bacterial meningitis?Read More »

Declining Admission to Intensive Care

An 86 year-old man was referred to ICU because of oliguria, acidaemia and decreased conscious level. He had originally been referred by the general practitioner to the acute general medicine team with unexplained weight loss, malaise and reduced mobility, 19 days previously. He had a longstanding history of bronchiectasis and COPD. He had been able to mobilise independently around his house and garden until suffering a pneumonia several months before this admission, and since required a four-times-daily care package.

During the current admission the patient had been treated for a further pneumonia on the basis of new chest x-ray changes, breathlessness and raised inflammatory markers. He had also undergone a CT chest/abdomen/pelvis for the unexplained weight loss. This was consistent with chronic COPD and bronchiectasis but no other positive findings. A week prior to ICU referral he was found to have acute kidney injury (creatinine 280 µmol/mL, baseline 90 µmol/mL) which had failed to improve. In the 24 hours prior to referral had become progressively drowsy and oliguric.

The patient appeared frail, cachectic and oedematous. He groaned in response to voice and could not follow commands. He had Kussmaul breathing at a rate of about 18 breaths per minute with SaO2 of 91% on 35% oxygen via facemask. Arterial blood gas showed pH 7.09, pCO2 7.1 kPa, pO2 9.1 kPa, base excess -9.3 mEq/L, lactate 1.3 mmol/L, glucose 8.7 mmol/L, creatinine 294 µmol/mL. His chest x-ray showed persistent bilateral patchy consolidation. He had a blood pressure of 98/55 mmHg with a pulse of 110 beats/min and cool peripheries. ECG showed sinus tachycardia. He was afebrile. Abdomen was soft and a urinary catheter had drained only 25 mL in the last 4 hours. Other than reduced responsiveness, neurological survey was non-diagnostic.

Evaluation of this patient revealed an elderly man who was severely unwell with acute kidney injury, probable sepsis, and a poor response to treatment to date. This was on the background of chronic suppurative lung disease, and diminished health for several weeks. No specific treatment limitations were in place. His next-of-kin was unaware of any prior expressed wishes and was under the impression that the patient would prefer active treatment. The referring team were of the opinion that intensive care should be considered.

Although no unifying diagnosis for this gentleman’s kidney injury had been identified, a single, rapidly-reversible condition was not apparent. The principal indication for intensive care was for renal replacement therapy for an unknown duration. In view of the status of his neurological, respiratory and cardiovascular systems, it was deemed that airway protection, invasive respiratory support and vasopressor treatment would almost certainly be required. His overall health status made the prospect of survival from a prolonged period of multi-organ support on intensive care highly unlikely. After discussion with the intensive care consultant and the referring consultant it was decided to withhold admission to the intensive care unit. Appropriate family discussions were held. The patient was actively managed on the ward for a further 12 hours, after which fluid management, antimicrobials and further investigation were ceased. He died the following day.

What uncertainties do we face when declining admission to intensive care?Read More »

Pneumococcal Sepsis

An elderly man with a background of ischaemic heart disease, severe aortic stenosis and type 2 diabetes mellitus presented following recent travel from Hong Kong with shortness of breath and hypoxia. A chest X-ray confirmed left lower lobe consolidation (CRP 502, WCC 22) and he was commenced on broad spectrum antibiotics (Tazocin and Clarithromycin). Over the following 12 hours he deteriorated on the ward, with worsening hypoxia, hypotension and anuria.

He required emergency admission to intensive care for intubation and ventilation, and required inotropic support. He developed a severe metabolic acidosis and rising lactate, for which  haemofiltration was commenced. Vasopressin was added, followed by dobutamine, and hydrocortisone started for inotrope resistant hypotension. He remained ventilated on 100% oxygen, with high pressure support. He had a positive pneumococcal antigen, and high dose benzylpenicillin was added to his antibiotic regime, along with Oseltamivir (Tamiflu). Despite 12 hours of intensive therapy his acidosis worsened and he failed to respond to increasing doses of inotropic support, dying 30 hours after presentation to hospital.

What are the clinical features of pneumococcal sepsis?Read More »

Use of Bicarbonate in Lactic Acidosis

Five days post emergency colorectal surgery, an elderly woman, following a brief period of chest pain a few hours earlier, developed progressive hypotension and tachycardia on the ward. She had a background of hypertension, type 2 diabetes and a chronic left foot ulcer. On examination she was found to be clammy, mottled and peripherally vasoconstricted with a GCS of 15/15. Her abdomen was soft and non-tender. Her initial ECG had showed no ischaemic changes and subsequent ECGs showed only a sinus tachycardia.

Initial blood gas analysis showed a metabolic acidosis (pH 7.21 Lactate 2.8mmol/l, HCO3 11.1mmol/l with a pCO2 of 2.7kPa).  A starting differential diagnosis of a cardiac event, a pulmonary embolism, critical ischaemia or sepsis related to a hip or foot ulcer were made. Urgent orthopaedic and vascular review were obtained, and it was deemed that neither the hip, ulcer or vascular insufficiency were a likely source for the deterioration. Initially it was planned to transfer her for a CTPA, however she became progressively unstable, was no longer fluid responsive, and was intubated on the ward and transferred to the intensive care unit (ICU) for stabilisation.

On arrival on ICU she continued to deteriorate, and in addition to fluid resuscitation required a high dose noradrenaline infusion to maintain her blood pressure. Broad spectrum antibiotics were started, a bedside echocardiogram and blood tests performed and hydrocortisone started. Her metabolic acidosis continued to deteriorate, subsequent arterial blood gas showed a pH 6.91, Lactate of 13.7mmol/l, HCO3 7.7mmol/l, base excess -25mmol/l with a pCO2 of 5.4kPa. It was decided to correct this acidosis with a bicarbonate infusion and initially 200ml of 8.4% was given over an hour, based on correcting half the calculated bicarbonate deficit (bicarbonate deficit (mmol) = base deficit 0.3xbodyweight(kg)1).  The blood gas following this infusion showed improvement in the metabolic acidosis despite the increasing Lactate (pH 7.07, Lac 14.0mmol/l, HCO3 10mmol/l, BE -18.6mmol/l with a pCO2 of 4.85kPa). She continued to deteriorate and the results from her blood tests, troponin and bedside echo suggested a primary myocardial infarction to cause this decline. She was too unstable for primary coronary intervention and her condition continued to deteriorate. She died 6 hours post admission.

Read More »

Metformin Associated Lactic Acidosis

Metformin Associated Lactic Acidosis

A 65-year-old female, presented with epigastric pain and a 3-day history of diarrhoea and vomiting, dry mouth and breathlessness. She had also experienced a transient loss of vision three days earlier. Her past medical history included type 2 Diabetes, hypertension (on ramipril), hypothyroidism. On arrival, her GCS was 15/15. She was tachypnoeic (respiratory rate 31 breaths/minute) but maintained oxygen saturations at 98% on high-flow oxygen. On auscultation, she had bibasal crepitations.  She was tachycardic (irregularly irregular pulse of 130 beats/minute), had cool peripheries and dry mucous membranes. Her BP was 105/39mmHg. She had tenderness in her lower abdomen. Her initial arterial blood gas revealed a marked metabolic acidosis (pH <6.8, pO2 23.1, pCO2 1.9) with unrecordable bicarbonate and lactate levels. She was referred to the surgical and critical care teams with a working diagnosis of ischaemic bowel secondary to an embolic phenomenon (atrial fibrillation and possible amaurosis fugax).

She was resuscitated in ED with 4 litres of crystalloid but rapidly deteriorated, requiring vasopressor support to maintain her blood pressure. Her metabolic disturbance did not not correct with resuscitation and her lactate now registered as >15. Bloods showed Na 140, K+ 6.3, urea 35, Cr 1105. A decision to intubate was made in view of a deteriorating conscious level and need for urgent filtration and invasive monitoring. Noradrenaline (0.3mcg/kg/min) and dobutamine (26mcg/kg/min) were required to achieve a satisfactory blood pressure and she was commenced on CVVHDF. She was considered to unstable for transfer to CT or an emergency laparotomy. Her metabolic disturbance remained severe (pH<6.8 and lactate 13.9).

Within 24 hours her metabolic state had improved (pH 7.19, pO2 7.19, PCO2 2.5, HCO3 10, BE -28.1, Lac 6.7) and she became more cardiovascular stability. A CT effectively excluded an intra-abdominal catastrophe. Renal failure secondary to dehydration complicated by Metformin Associated Lactic Acidosis (MALA) appeared to be the most likely presentation. Her condition continue to stabilise and her vasopressor support and RRT was weaned over the next 7-10 days

What are the risk factors, clinical features and management of metformin associated lactic acidosis?Read More »

Ethylene Glycol Poisoning

Ethylene Glycol Poisoning

A 50 year old man was found by the roadside by paramedics with a GCS of 13. On arrival he had a patent airway, but a GCS of 5 (E1 M3 V1). He had an elevated respiratory rate (30/min) and a profound metabolic acidosis (pH 6.97 pO2 16.8 pCO2 1.68 HCO3 2.8 BXS -30.8 COHb 0). The lactate was too high to be measured by the blood gas analyser and there was an elevated anion gap [(147+5.5) – (2.8+ 109) = 40.7] He was cardiovascularly stable with warm peripheries. His ECG revealed a prolonged QTc. He was intubated and 8.4% sodium bicarbonate was administered. His initial laboratory bloods showed CRP 11, white cell count 29.5 CK 2539 creatinine 213. Ethanol levels were <10 and Paracetamol and salicylate levels were within normal limits. He was given a dose of intravenous cefotaxime and his urine was sent for organic acids screening which revealed an enormous peak of glycolic acid and small increase in oxalic acid, consistent with an overdose of ethylene glycol.

After arrival in intensive care, the sodium bicarbonate had improved the pH to 7.2, with a residual lactaemia (15 as measured in the laboratory, without any interference from glycolic acid). CVVHDF was commenced. In order to inhibit futher metabolism of the ethylene glycol, 10% ethanol was commenced until fomepizole was available (an initial bolus of 800ml, followed by an infusion at 180ml/hr). Ethanol levels were monitored. Fomepizole was administered later that day abd the ethanol stopped (15mg/kg loading and 1mg/kg/hr). The renal function deteriorated despite CVVHDF (peaked at urea 28, creatinine 724 on day 4), which was continued for 5 days. Treatment for aspiration pneumonia was started in day 1 and cardiovascular support was continued (noradrenaline). Intermittent boluses of glycopyrolate were required to treat the bradycardia associated with fomepizole. A gradual improvement occurred and he had made a full neurological recovery within 2 weeks, with much improved renal function. He later admitted to drinking 250ml of antifreeze.

What are the clinical features and management of ethylene glycol poisoning?Read More »

Scoring Systems for Acute Hepatic Dysfunction

Scoring Systems for Acute Hepatic Dysfunction

A 40 year old was admitted to hospital with his first presentation of alcoholic liver disease with symptoms of jaundice (bilirubin 248), poor mobility, hallucinations and passing of black stool. On admission to hospital, he was lethargic with features of Grade II encephalopathy, was coagulopathic (INR 3.1), had deranged electrolytes (sodium 114, potassium 2.9), but a normal creatinine (54) and a raised white cell count (15.9). He was haemodynamically stable and had a haemoglobin of 119g/L with no signs of active bleeding. His abdomen was distended (ascites), he was visibly jaundiced and had spider naevi on his chest. An abdominal ultrasound was performed that showed liver cirrhosis, borderline splenomegaly, small volume ascites and normal kidneys. A full liver screen revealed no infective cause and his AST:ALT ratio suggested alcoholic liver disease. His prognostic indicator scores were all suggestive of severe alcoholic liver hepatitis (Maddrey score: 131; Childs: C; Lille Score: 1; GAHS: 10; MELD: 29). His serum ammonia level was 170. He was commenced on terlipressin, prednisolone and pentoxyphylline and thiamine. Despite this, his encephalopathy progressed to grade 4 and he required intubation and ventilation for airway protection and a presumed aspiration pneumonia. His liver function and coagulopathy continued to worsen, and he developed an acute kidney injury necessitating commencement of renal replacement therapy. He required noradrenaline to support his blood pressure. Ascitic tap ruled out spontaneous bacterial peritonitis. He was discussed with regional liver centres, but was not felt to be a transplant candidate. His liver and renal function continued to deteriorate and eventually treatment was withdrawn nearly 3 weeks into his admission.

Describe the scoring systems for assessing the severity of acute hepatic dysfunction.

Read More »

Lactate Physiology and Predicting Disease Severity

Lactate Physiology and Predicting Disease Severity

A middle aged man presented with urosepsis after several days antibiotic therapy in the community. He was in septic shock, with tachypnoea, tachycardia and hypotension. He had raised inflammatory markers and acute kidney injury. His initial lactate level was 14mmol/L with a significant metabolic acidosis (base deficit 21). He was commenced on iv antibiotics, noradrenaline and renal replacement therapy. Lactate levels cleared to less than 2mmol/L over the next 24hrs. He weaned off noradrenaline in 72 hours and CVVHDF over the next 5 days.

How is lactate produced and what is its significance in predicting the severity of critical illness?

Read More »

Medical Management of Abdominal Compartment Syndrome

Medical Management of Abdominal Compartment Syndrome

An elderly man was admitted after a Hartman’s procedure with primary closure for a perforated sigmoid diverticulum with four quadrant peritonitis. Postoperatively, he remained ventilated and noradrenaline dependent. His intra-abdominal pressures gradually rose from 15 to 24mmHg. Urine output was poor, and he required peak pressures of 28cmH2O to achieve 6ml/kg tidal volumes. Vasopressor requirements gradually increased and a diagnosis of abdominal compartment syndrome was made. Medical management was attempted with fluid resuscitation, increased sedation, aspiration of nasogastric tube and neuromuscular blockade. However this did not improve the intra-abdominal pressures so the patient returned to theatre laparostomy and VAC dressing. On return from theatre, intra-abdominal pressures stabilised between 12 and 15mmHg. Noradrenaline requirements fell and urine output improved. The abdomen was closed on day 5 and he was discharged from ICU on day 10.

What non-surgical strategies can be used to reduce intra-abdominal pressure?

Read More »