Albumin for Resuscitation in Critical Illness

 

A 50-year-old man was brought to the emergency department. He had sustained a burn affecting 55% of his total body surface area and a significant inhalational injury.  In the emergency department he was intubated and ventilated, central venous, arterial and urinary catheters were placed and resuscitation begun using the Parkland formula.

He was transferred to burns intensive care.  Fluid resuscitation was continued using Hartmann’s solution.  A bronchoscopy was performed; 1.26% sodium bicarbonate was used for lavage.  He became increasingly tachycardic and hypotensive.  He was oliguric.  His haematocrit was 0.45.  Fluid status was difficult to assess clinically; he felt warm to touch.  An oesophageal Doppler probe was sited which demonstrated low stroke volume and corrected flow time.  His Doppler parameters improved with each 250ml bolus of Hartmann’s solution but the effect was short lived.  Noradrenaline and then adrenaline infusions were used in an attempt to maintain blood pressure.  After a significant volume of crystalloid had been given, approximately 12 hours after the time of injury, 4.5% human albumin solution was requested.  This seemed to have a more prolonged effect than Hartmann’s solution.  Over the next 12 hours the patient’s haemodynamic status stabilised and he was able to undergo initial surgical management of his burn 36 hours after presentation.

What is the evidence for the use of human albumin solution for fluid resuscitation in critically ill patients.Read More »

Intra-Abdominal Hypertension

 

A 48 year old male was admitted to the ICU with rapidly evolving multi-organ dysfunction. He was in type I respiratory failure, hypotensive and had stage II acute kidney injury. He had been an inpatient recovering from a laparotomy for major urological surgery 5 days prior to his ICU admission. This was complicated by a major intraoperative haemorrhage.

The patient was commenced on treatment for presumed hospital acquired pneumonia. He was placed on mechanical ventilation and a noradrenaline infusion was commenced to maintain a mean arterial pressure of ≥65mmHg. Over the following 24 hours the patient displayed worsening lung compliance in the context of adequate oxygenation and an atracurium infusion was started. Simultaneously the patient appeared to develop an ileus and he became anuric. Repeated clinical examination revealed an increasingly distended abdomen. A CT of the abdomen and pelvis showed a large left sided retroperitoneal haematoma with evidence of pelvico-ureteric leak on the left and an associated fluid collection. The patient was taken to theatre for urgent re-laparotomy.

At the conclusion of the operation, the surgical team was unable to close the abdomen due to significant bowel oedema. They accepted a laparostomy and returned the patient to ICU with a negative pressure wound dressing in-situ. Post-operatively, there was significant improvement in lung compliance, vasopressor requirement and urine output. Enteral feeding was quickly re-established. The abdomen was closed during the same hospital admission and the patient survived-to-discharge home. At no point was this patient’s intra-abdominal pressure measured.

 

Describe the management of intra-abdominal hypertension.

Christopher Westall

Intra-abdominal hypertension (IAH)- abdominal compartment syndrome (ACS) is a well-recognised cause of morbidity and mortality in critically ill patients, rising to prominence in the 1990s with increased early survival of patients with intra-abdominal pathology requiring emergent laparotomy (principally abdominal aortic aneurysm repair and blunt trauma).1,2 IAH/ ACS may be precipitated by a range of insults local (primary IAH) and distant (secondary IAH) to the abdomen.3 The syndrome encompasses a spectrum of severity and there are a range of treatment options, though with little high quality evidence to support these.

The World Society of the Abdominal Compartment Syndrome (WSACS) consensus guidelines recommend that intra-abdominal pressure (IAP) is measured using the trans-bladder technique in any critically ill patient with an associated risk factor for IAH. The normal value for IAP is <12mmHg. IAH is then categorized by increasing pressure increments from grade I (IAP 12-15mmHg) to grade IV (>25mmHg). Abdominal compartment syndrome is defined as sustained IAP >20mmHg associated with new organ dysfunction.3

The WSACS Consensus proposes a management algorithm for IAH/ ACS that is loosely analogous to commonly encountered algorithms for managing raised intracranial pressure The abdomen is considered a fixed compartment with intra-luminal and extra-luminal volumes that can be manipulated through neutral-negative fluid balance, nasogastric and colonic decompression and percutaneous drainage of ascites/collections. In this instance, however, the compliance of the “box”, the abdominal wall, can also be manipulated by patient position, ventilatory strategy and neuromuscular blockade. Decompressive [laparotomy] therapy is reserved for algorithm failure.

The efficacy of protocolised management of IAH/ACS has never been demonstrated. A single prospective observational study suggested reduction in morbidity and mortality using algorithm based management of IAH; the authors quoted an increase in survival-to-discharge rate from 50 to 72% (p= 0.015) across 6 years with improved rates of same-admission closure. However the study was single centre, recruiting patients only after the laparostomy, with substantial selection and observer bias. Furthermore it was unclear which parts of the protocol were effective.4 While the basic principles underlying the WCASC 2013 algorithm are sensible, it must be acknowledged that proposed therapies such as resuscitation with hypertonic fluids, diuretic-driven diuresis and ultrafiltration through renal replacement therapies have no evidence to support them and have potentially serious implications for the patient.

Given that the efficacy of protocolised management of IAH/ACS is uncertain, is there then any evidence to support the measurement of IAP in every “at risk” patient, especially since the list of risk factors for IAH is so extensive that it is difficult to imagine a critically ill patient that is not at risk. This would not be without significant task-burden to critical care nursing staff, and as with any clinical index in ICU, risks morbidity from misinterpretation. There are only two small studies that have examined whether clinical examination can reliably predict intra-abdominal pressure; both small studies with significant methodological flaws and both conducted between 1996- 2000 when awareness of IAH was comparatively low. Importantly both studies compared examination to IAP measurement at pressures well below 20mmHg, where there is little evidence that specific intervention improves patient outcome, beyond highlighting that that patient is at risk of ACS.5,6

Decompressive laparotomy is recommended for the treatment of all patients with ACS refractory to medical therapy.3 In modern practice it is difficult to accurately assess the performance of this strategy in primary IAH/ACS, such is the absence of clinical equipoise. As many reviews acknowledge, the improvement in patient survival rates associated with primary laparostomy in abdominal trauma patients in the 1990s caused a fundamental paradigm shift from which it is now difficult to ethically justify alternative treatment strategies.1,2 That is to say that many patients with IAH/ ACS will now present to the ICU once decompressive laparostomy has either occurred or is imminently planned.

The benefits of decompressive laparotomy in secondary ACS are certainly less; data exists only for acute severe pancreatitis and sepsis associated with secondary peritonitis. While in both instances it must be acknowledged that laparostomy reduces IAP, like many interventions in a critically ill patient population, this does not translate into mortality benefit.7,8 As commentators note, laparostomy may often be performed because of a conceptual benefit of relook-laparotomy 48 hours later, rather than inability to close the abdomen or specific concerns regarding ACS.2 Indeed, regarding secondary peritonitis, there is good evidence that primary closure with on-demand re-laparotomy is non-inferior to laparostomy and planned re-laparotomy, and is associated with fewer surgeries and lower healthcare costs.9 This strategy is now [weakly] endorsed by the WCACS.3

One point that is widely agreed upon is the management of laparostomy. It appears universally agreed that negative pressure wound therapy (NPWT, i.e. “vac dressings”), with or without a form of dynamic retention system, is superior to previously popular methods such as bioprosthetic mesh and Bogota bag. The largest systematic review on the subject suggests that NPWT is associated with improved rates of primary delayed fascial closure (57.8%, 95% CI 50.8- 64.7) and mortality (22.3%, 95% CI 17.5- 27.5) with lower rates of entero-atmospheric fistulation (7.0%, 95% CI 5.0- 9.3) and abscess formation (4.2%, 95% CI 2.3- 6.9).10 This systematic review heavily influenced the most recent NICE review on the topic leading to endorsement of NPWT in clinical guideline IPG467, “Negative pressure wound therapy for the open abdomen” (2013).


Conclusion

The measurement of IAP in all at-risk critically ill patients is probably unnecessary and burdensome in resource terms. Critical care practitioners should have a low index of suspicion for ACS in their patients; if this develops then decompressive laparotomy is the treatment of choice (unless there is a large extra-luminal collection amenable to urgent drainage), particularly since modern laparostomy management appears to be associated with an increasingly low complication rate, if the abdomen cannot be closed.

The consensus guidelines for IAH/ACS remind us that attention to detail; such as ensuring that enteral nutrition is succeeding, that bowel care is optimal and that fluid balance is tightly controlled, may prevent numerous serious ICU-associated syndromes from ever developing.


References

1. Balogh ZJ, Lumsdaine W, Moore EE, Moore FA. Postinjury abdominal compartment syndrome: from recognition to prevention. Lancet,  2014; 384:1466-75

2. Leppaniemi AK. Laparostomy: why and when? Critical Care 2010; 14: 216. DOI: 10.1186/cc8857

3. Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain MLNG, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, Sugrue M, et al.  Intra-abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med, 2013; 39:1190-1206

4. Cheatham ML, Safcsak KRN. Is the evolving management of intra-abdominal hypertension and abdominal compartment syndrome improving survival? Crit Care Med,  2010; 38:402-407

5. Kirkpatrick AW, Brenneman FD, McLean RF, Rapanos T, Boulanger BR. Is clinical examination an accurate indicator of raised intra-abdominal pressure in critically injured patients? Can J Surg, 2000:43:207-11

6. Sugrue M, Bauman A, Jones F, Bishop G, Flabouris A, Parr M, Stewart A, Hillman K, Deane SA. Clinical examination is an inaccurate predictor of intra-abdominal pressure. World J Surg, 2002; 26:1428-31

7. Mentula P, Hienonen P, Kemppainen E, Puolakkainen P, Leppaniemi A. Surgical decompression for abdominal compartment syndrome in severe acute pancreatitis. Arch Surg, 2010; 145:764-9

8. Robledo FA, Luque-de-Leon E, Suarez R, Sanchez P, de la Fuente M, Vargas A, Mier J. Open versus closed management of the abdomen in the surgical treatment of severe secondary peritonitis: a randomized clinical trial. Surg Infect (Larchmt), 2007; 8:63–72

9. van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, et al. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA, 2007; 298:865-73

10. Quyn AJ, Johnston C, Hall D, Chambers A, Arapova N, Ogston S, Amin AI. The open abdomen and temporary abdominal closure systems- historical evolution and systematic review. Colorectal Dis, 2012; 14: e429–38

 

Adjunctive Therapies in Bacterial Meningitis

 

A 42 year old female with type 2 diabetes presented to hospital with fevers, malaise and headache. She had become unwell 7 days earlier with coryzal symptoms, feverishness, and cough with green sputum. On examination she was unwell and intermittently drowsy but gas exchange was adequate and she was haemodynamically stable with lactate 1.5 units. Temperature was 39.6oC and glucose was 15.8 units. Chest x-ray showed bibasal consolidation. CRP was 35 units and white cell count was 12.9. She received ceftriaxone 2 g, clarithromycin 500 mg, intravenous crystalloid 1000 mL and an insulin sliding scale.

One hour after admission the patient deteriorated with GCS 6 and non-purposeful shaking movements of the right arm and leg, which resolved with diazepam 5 mg intravenously. Her airway became partially obstructed despite nasopharyngeal and oral airways and she was urgently intubated. Aciclovir 900 mg was given and the patient was transferred to the ICU.

CT head showed no abnormality. A lumbar puncture revealed turbid yellow-tinged cerebrospinal fluid (CSF). Dexamethasone 10 mg was given. A phenytoin infusion was started. Sedation was maintained with propofol and fentanyl.

The CSF showed Gram positive cocci and a white cell count of 1274 units with neutrophils 1248 units. CSF glucose was 0.3 units and protein was 5.5 g. Ceftriaxone twice daily and dexamethasone four times daily were continued and acyclovir was discontinued. Blood cultures and CSF both grew Streptococcus pneumoniae. Viral PCR was negative. After 48 hours the patient was extubated and then discharged to the ward without any neurological deficit. She went home 5 days after admission. Ceftriaxone was given for a total of 14 days, facilitated by the outpatient parenteral antibiotic therapy team. She was advised not to drive for 6 months.

What adjunctive therapies, if any, are effective in the treatment of bacterial meningitis?Read More »

Thrombolysis and Intermediate-Risk Pulmonary Embolism

 

A 40 year old woman was admitted to the emergency department (ED) after a syncopal episode. On admission she was in acute respiratory distress and described a two day history of sudden onset breathlessness. She had no previous medical history. Her only regular medication was the oral contraceptive pill. She had had a recent flu-like illness and been less active than usual. On arrival she had a respiratory rate of 30 breaths/minute with accessory muscle use. An ABG on 15L/min oxygen via non-rebreathe mask showed type I respiratory failure (PO2 8.4kPa). She was tachycardic (120bpm) and blood pressure was 98/50. Chest x-ray and bloods were unremarkable although her ECG revealed a sinus tachycardia with right axis deviation, Q waves and inverted T waves in lead III.

The patient had a bedside echocardiogram that revealed a severely dilated right ventricle with poor tricuspid annulus planar systolic excursion (TAPSE). A presumed diagnosis of a pulmonary embolism (PE) was made. Thrombolytic therapy was considered but rejected at this point, in view of the haemodynamic stability. The patient was commenced on enoxaparin at a dose of 1.5mg/kg.

CT pulmonary angiography confirmed the presence of bilateral pulmonary emboli. On return from CT the patient was sat up briefly at which time she became cyanotic and had a brief self-terminating seizure. During this time her blood pressure was not recordable, and significant hypotension secondary to obstructive shock was assumed to be the cause. At this point it was decided to proceed with thrombolysis. The patient was transferred to the Intensive Care Unit, made a rapid recovery without the need for vasopressors or intubation and ventilation, and was discharged from hospital a few days later.

What is the evidence for intravenous thrombolysis for intermediate-risk pulmonary embolism? Read More »

Emergency Coronary Angiography After Out-of-Hospital Cardiac Arrest


 

 

A 70 year old woman suffered an out of hospital cardiac arrest whilst playing golf. She received bystander cardiopulmonary resuscitation and two shocks from an automated external defibrillator which restored spontaneous circulation. She was intubated at the scene  and arrived in the resuscitation department cardiovascularly stable, well oxygenated and unconscious in the context of propofol sedation.

There was no prodrome suggestive of a specific aetiology for the cardiac arrest but information from relatives described an ex-smoker with hypercholesterolaemia and diet controlled diabetes mellitus who had previously undergone percutaneous coronary intervention (PCI) for ischemic heart disease. She took regular aspirin, statin and beta-blocker. A post resuscitation 12 lead ECG showed sinus rhythm, left axis deviation and non-specific lateral ischaemia. Troponin was elevated above 200 ng/L.

In view of this she was loaded with dual antiplatelet therapy and underwent emergency coronary angiography which demonstrated occlusion of two small branches (OM1 and PLV) but no large vessel coronary artery occlusion to explain the cardiac arrest. The occluded vessels were not stented. Subsequent echocardiogram and cardiac MRI demonstrated old circumflex territory scar but an otherwise normal heart and ultimately it was agreed that the cause of cardiac arrest was probably ventricular arrhythmia secondary to scar.

She was ventilated for 24 hours with targeted temperature management before being woken and extubated. Although she was initially confused, her neurology improved over approximately 48 hours such that she was discharged with no apparent neurological injury. An implantable cardiac defibrillator was placed prior to discharge to prevent sudden cardiac death from any future arrhythmia.

Clinical questions:

  1. In survivors of out of hospital cardiac arrest should we proceed to early coronary angiography with a view to PCI?
  2. If so, should we apply this approach to all such patients or only a subset?
  3. If we do proceed to early coronary angiography, should this occur before or after other investigations, specifically computed tomography (CT) of the head and chest to look for intracerebral bleed and pulmonary embolism?

Read More »

Massive Propranolol Overdose

A 35 year old male presented with massive (over 1500mg) propranolol overdose on a background of depression and anxiety. He called for help and was found alert and cardiovascularly stable by paramedics at 50 minutes post ingestion. By 80 minutes his conscious level had fallen to a Glasgow Coma Score of 11 and he had become hypotensive. He started fitting en route to hospital and lost cardiac output as he arrived at hospital. The initial cardiac arrest rhythm was broad complex slow pulseless electrical activity. After a prolonged resuscitation attempt he regained spontaneous cardiac output but never achieved cardiovascular stability and sadly died later that evening.

He was resuscitated according to standard resuscitation algorithms. In addition, several specific therapies were given in line with Toxbase recommendations1: Glucagon was administered as a 10mg slow bolus followed by a 100-150 mcg/kg/hr infusion. Insulin (actrapid) was given as a 60 unit bolus followed by a 1-2 unit/kg/hr infusion along with a glucose bolus of 0.5 g/kg followed by an infusion of 0.5 g/kg/hr. Intralipid was delivered as a bolus (100 ml 20%) followed by an infusion. Atropine 3mg was given and the adrenaline boluses were changed to an infusion at 10 mg/hr.

Cardiac arrest remained refractory until a 100 ml bolus of 8.4% Sodium Bicarbonate was administered prompting almost instantaneous restoration of circulation.

The circulation remained unstable with a broad complex bradycardia resistant to transcutaneous pacing. High dose adrenaline infusion, high dose euglycaemic insulin therapy and glucagon infusion were continued. Transvenous pacing was also ineffective and the patient sadly deteriorated into a refractory cardiac arrest from which he did not recover.

The patient regained his cardiac output when the sodium bicarbonate bolus was given. The temporal association between these two events was profound and led me to question why this therapy sits so far down the toxbase treatment algorithm.1

This case summary aims to answer: 

  1. What works in Propranolol overdose? 
  2. What doesn’t really work? 
  3. Which order should I give things?

Read More »

Declining Admission to Intensive Care

An 86 year-old man was referred to ICU because of oliguria, acidaemia and decreased conscious level. He had originally been referred by the general practitioner to the acute general medicine team with unexplained weight loss, malaise and reduced mobility, 19 days previously. He had a longstanding history of bronchiectasis and COPD. He had been able to mobilise independently around his house and garden until suffering a pneumonia several months before this admission, and since required a four-times-daily care package.

During the current admission the patient had been treated for a further pneumonia on the basis of new chest x-ray changes, breathlessness and raised inflammatory markers. He had also undergone a CT chest/abdomen/pelvis for the unexplained weight loss. This was consistent with chronic COPD and bronchiectasis but no other positive findings. A week prior to ICU referral he was found to have acute kidney injury (creatinine 280 µmol/mL, baseline 90 µmol/mL) which had failed to improve. In the 24 hours prior to referral had become progressively drowsy and oliguric.

The patient appeared frail, cachectic and oedematous. He groaned in response to voice and could not follow commands. He had Kussmaul breathing at a rate of about 18 breaths per minute with SaO2 of 91% on 35% oxygen via facemask. Arterial blood gas showed pH 7.09, pCO2 7.1 kPa, pO2 9.1 kPa, base excess -9.3 mEq/L, lactate 1.3 mmol/L, glucose 8.7 mmol/L, creatinine 294 µmol/mL. His chest x-ray showed persistent bilateral patchy consolidation. He had a blood pressure of 98/55 mmHg with a pulse of 110 beats/min and cool peripheries. ECG showed sinus tachycardia. He was afebrile. Abdomen was soft and a urinary catheter had drained only 25 mL in the last 4 hours. Other than reduced responsiveness, neurological survey was non-diagnostic.

Evaluation of this patient revealed an elderly man who was severely unwell with acute kidney injury, probable sepsis, and a poor response to treatment to date. This was on the background of chronic suppurative lung disease, and diminished health for several weeks. No specific treatment limitations were in place. His next-of-kin was unaware of any prior expressed wishes and was under the impression that the patient would prefer active treatment. The referring team were of the opinion that intensive care should be considered.

Although no unifying diagnosis for this gentleman’s kidney injury had been identified, a single, rapidly-reversible condition was not apparent. The principal indication for intensive care was for renal replacement therapy for an unknown duration. In view of the status of his neurological, respiratory and cardiovascular systems, it was deemed that airway protection, invasive respiratory support and vasopressor treatment would almost certainly be required. His overall health status made the prospect of survival from a prolonged period of multi-organ support on intensive care highly unlikely. After discussion with the intensive care consultant and the referring consultant it was decided to withhold admission to the intensive care unit. Appropriate family discussions were held. The patient was actively managed on the ward for a further 12 hours, after which fluid management, antimicrobials and further investigation were ceased. He died the following day.

What uncertainties do we face when declining admission to intensive care?Read More »

The Role of Capnography during Cardiac Arrest

 A 68 year-old gentleman was admitted to the Emergency Department in cardiac arrest. He had complained of sudden onset upper abdominal pain to his wife immediately prior to a collapse, and bystander cardiopulmonary resuscitation (CPR) was commenced whilst emergency services were called. He had a background of ischaemic heart disease, insulin-dependent diabetes, peripheral vascular disease and hypertension.

On arrival, the Paramedic crew found him to be in ventricular fibrillation was the predominant rhythm. Despite appropriate advanced life support with defibrillation and administration of adrenaline and amiodarone over multiple cycles. His airway was supported with an I-Gel supraglottic airway device, and he was transferred to hospital urgently.

Ischaemic heart disease is the leading cause of death in the world, and sudden cardiac arrest is responsible for more than 60% of adult deaths from coronary heart disease. Early and effective CPR, early defibrillation and physiological support post-resuscitation form the chain of survival [1].

Assessment of the patient’s airway on arrival in the Emergency Department revealed evidence of vomit in the pharynx, and endotracheal intubation was performed. Vomitus was aspirated from his endotracheal tube, indicating pulmonary aspiration either at the time of collapse or during the resuscitation attempts. Sidestream capnography was connected to a self-inflating bag administering high-concentration oxygen. The initial capnography indicated a flattened end tidal carbon dioxide (EtCO2) trace with a highest partial pressure of 1.5 kPa. Chest auscultation was performed and air entry was confirmed as being equal bilaterally.

Chest compressions continued uninterrupted and by this stage the overall resuscitation attempt had been ongoing for 45 minutes. The rhythm had changed to pulseless electrical activity, and despite effective CPR, administration of adrenaline and fluids, there was no return of spontaneous circulation (ROSC). Blood gas analysis revealed a severe metabolic acidosis (pH 6.8, lactate 15.2 mmol/L) and by this stage the highest EtCO2 recorded was 0.9 kPa. Following discussion with the team, and on the grounds of futility, the resuscitation attempt was abandoned.

What is the role of capnography in cardiac arrest?

Read More »

Decompressive Craniotomy in Traumatic Brain Injury

A 20 year-old man was admitted to his local district hospital with a severe head injury following an assault. On arrival in the Emergency Department he was agitated with a reduced conscious level, with evidence of blunt trauma to the head and neck. Prior to intubation, his Glasgow Coma Score (GCS) was recorded as 7 (E1V2M4), and with cervical spine precautions he underwent intubation with subsequent mechanical ventilation and sedation.

An urgent CT brain and cervical spine revealed early evidence of intracerebral contusions with diffuse areas of petechial intracerebral haemorrhage identified. Nasal and maxillary fractures were also seen, with no cervical spine pathology identified. He was transferred to the regional neurological centre for assessment and ongoing management.

On arrival in the Neurosurgical Intensive Care unit the patient underwent insertion of an intracranial pressure monitor revealing an intracranial pressure (ICP) of between 30-35 mmHg. Pupil reactivity was sluggish bilaterally. Sedation was changed to infusions of propofol, fentanyl and midazolam, positioning was optimised with 20 degree head-up tilt, endotracheal tube ties were replaced and targeted mechanical ventilation to EtCO2 4- 4.5kPa. Central venous access was established and an infusion of Noradrenaline was used to target cerebral perfusion pressure to 70mmHg.

Initial medical management stabilised ICP below 25mmHg, but within the next 12 hours this began to rise despite neuromuscular blockade and infusion of hypertonic saline. Further CT imaging revealed progression of the intracerebral contusions with developing oedema. The patient was transferred to the operating theatre for insertion of an external ventricular drain. CSF drainage resulted in an immediate but small improvement in ICP but again over the next 12 hours it began to rise, and decision was made for bifrontal decompressive craniectomy.

Subsequent recovery was slow and was complicated by ventilator-associated pneumonia, a protracted tracheostomy wean and severe agitation. The patient underwent intensive neuro-rehabilitation and had been decannulated, but was left with persistent cognitive impairment, seizures and depression.

What is the rationale for performing decompressive craniotomy in TBI?

Read More »

Management of Refractory Intracranial Hypertension

A young man with no significant past medical history was admitted to the Emergency Department following an assault. His Glasgow Coma Score on arrival was 8 with a motor score of 4 and there was evidence of an external head injury. Pupils were symmetrically reactive. He was intubated to facilitate further management. Both primary and secondary surveys were unremarkable apart from multiple contusions to the face and scalp. Multi-slice CT showed no intrabdominal or intrathoracic injury but significant intracranial pathology with subarachnoid and intraventricular blood and multiple, principally frontal contusions. No associated neuraxial fracture was seen.

Urgent neurosurgical opinion was sought which confirmed no immediate target for surgical intervention. The patient was transferred to the intensive care unit where appropriate monitoring was established including the insertion of a fibreoptic subdural intracranial pressure bolt. Initial intracranial pressure was measured at 18 mmHg. Sedation with propofol and alfentanil infusions was titrated to a RASS score of -3, ventilation adjusted to a PaO2 > 13 kPa and PaCO2 4.5-5.0 kPa as per the Brain Trauma Foundation guidelines and an infusion of noradrenaline started to achieve a cerebral perfusion pressure of 60 mmHg. The patient was nursed 30° head-up and although active cooling was not undertaken, temperature maintained at less 35-37.5°C.

There was initial stability but approximately 24 hours after admission sustained rises in intracranial pressure (ICP) in excess of 25 mmHg were seen, necessitating boluses of sedation, the addition of atracurium by infusion, administration of hypertonic saline, cooling to 35°C and brief periods of hyperventilation to a PaCO2 4.0-4.5 kPa albeit without significant control. Urgent repeat CT brain was undertaken which showed evolution of the contusions with signifiant oedema and loss of both the lateral ventricles and basal cisterns.

On further consultation, neurosurgical colleagues again felt that no immediate surgical option was viable; in particular that attempts to insert and external ventricular drain were unlikely to be successful and that contusionectomy would produce significant disability. The patient was randomised into the RESCUEicp trial and thiopentone infusion started at a rate to produce isoelectrical activity on three lead electroencephalogram.

What are the management options for refractory intracranial hypertension?
Read More »